

# Intermediate Temperature Solid Oxide Fuel Cell Development SECA Core Technology Program Review Meeting

S. Balagopal, I. Bay, J. Hartvigsen and S. Elangovan

Phase I DOE-SBIR Grant No. DE-FG 03-01ER83212

Period of Performance: Sept. 01 - Feb. 02



#### Outline

- Review of intermediate temperature electrolyte options
  - Opportunities and challenges
- Phase I electrode strategy
  - Phase I results
- Phase II plan



### Current SOFC Electrolytes

| arsening      | La(Sr)MnO <sub>3</sub> zirconate formation at the interface | Demonstrated No electronic leak current 1000°C Operation typical; |
|---------------|-------------------------------------------------------------|-------------------------------------------------------------------|
| arsening      | formation at                                                | 1000°C Operation typical;                                         |
| arsening      |                                                             | 1 31                                                              |
| Ni coarsening |                                                             | very thin electrolyte allows 800°C operation;                     |
|               |                                                             | lower than 800°C not practical yet                                |
| eria          | La(Sr)CoO <sub>3</sub>                                      | Electronic short                                                  |
|               | CTE mismatch                                                | Differential expansion from air to fuel side                      |
| ria           | La(Sr)CoO <sub>3</sub>                                      | No electronic leak current                                        |
| ation of      | CTE mismatch                                                | CTE similar to zirconia                                           |
|               |                                                             | Long term cell stability is an issue material cost                |
|               | -O                                                          |                                                                   |



#### Lanthanum Gallate

#### La(Sr)Ga(Mg)O<sub>3</sub> (LSGM)

- High oxygen ion conductivity
  - Higher conductivity at 800°C than zirconia at 1000°C
- Stable in fuel
  - Ionic transference number ~1 over the entire pO₂ range of interest
- Challenges
  - Anode reactivity
  - Strength



# LSGM Conductivity



• Ionic conductivity at 750°C ~ zirconia at 1000°C



### Phase I Strategy for Electrodes

#### Anode

Present Anode: Ni-Ceria or Ni-LSGM

- Objective:
  - Eliminate or reduce reaction between
     La (in electrolyte) and Ni (in anode)
- Approach:
  - Additive to the anode that will reduce the reaction
  - Verify using powder reactivity studies



#### Phase I Strategy for Electrodes

#### Cathode

Present Cathode: La(Sr)CoO<sub>3</sub>

- Objective:
  - Lower cathode thermal expansion coefficient
- Approach
  - Doping in B-site (replacing Co) may lower
     CTE



# Reactivity Studies

- Common reaction products
  - LaNiO<sub>3</sub>, La<sub>2</sub>NiO<sub>4</sub>
- Powder mixtures of modified Anode and LSGM
  - 1250°C, 2 hours and 6 hours
  - 1350°C, 6 hours
- 1250°C potential electrode firing temperature for sintered electrolyte
- 1350°C potential sintering temperature for an anode supported bi-layer



# XRD - Reaction Study



 Additive Level 3 - significant reduction in second phase content at 1250° C



# XRD - Reaction Study



 Additive Level 3 - significant reduction in second phase content even at 1350° C



# Conclusion of Anode Study

- Reaction with LSGM
  - − Reaction products: 1250°C La<sub>2</sub>NiO<sub>4</sub>

1350°C LaNiO<sub>3</sub>

- Reaction products below detection limit even at 1350°C, 6 hrs in powder mixture
- The modified anode will allow anode supported thin gallate electrolyte



#### LSCo Cathode Evaluation

#### CTE and Conductivity





#### Conclusion of Cathode Evaluation

- B-site doping only slightly decreases the CTE
- Decrease in conductivity is rapid with Bsite doping
  - The conductivity of doped LSCo is still high even at 600°C: 600 S/cm
  - CTE is still high at 18 ppm/°C
  - Cathode is likely fired at a lower temperature
    - Effect of mismatch would be lower
- No new phase formation detected at 1350°C, 6 hrs



# Single Cell Performance



- > 1 V OCV indicating good ionic transference number
- ASR 1 ohm.cm<sup>2□</sup> with newer electrodes and 500 micron electrolyte

18 June 2002 SECA CTP #14



#### Initial test on performance stability



• No change in performance after ~ 300 hours



#### LSGM Raw Material Cost Estimate





# Summary of Phase I

- LSGM is a promising electrolyte for low temperature operation
- Reactivity with anode was addressed in Phase I
  - Anode composition with the promise of bi-layer compatibility developed
- No reaction product with LSCo cathode
  - Cathode less likely to be an issue



#### **Technical Directions**

- Cell Fabrication
  - Electrolyte thickness
  - Electrode microstructure
  - Fabrication conditions
- Electrolyte Strength
  - Literature Strength Data: 160 MPa at room temp. and 55 MPa at 900°C
  - Approach: Anode supported



#### Phase II Plan

- Technical Issues
  - Electrolyte sintering temperature
  - Strength of electrolyte
  - Bi-layer fabrication development
- Phase II Team
  - Ceramatec
     Materials, Fabrication, Testing
  - Sandia National Labs. Electrolyte Strength
  - New Mexico Tech. Ceramic Process Development